Deterministische endliche Automaten

DEA ist die deutsche Abkürzung für *Deterministischer Endlicher Automat*. Im Englische lautet die Abkürzung DFA für*Deterministic Final Automaton*. Auch in deutschsprachiger Fachliteratur wird oft das Akronym DFA genutzt.

Definition

Eine DEA ist ein 5-Tupel DEA = { Q, Σ , δ , E, s} er besteht also aus den folgenden 5 Teilen:

- Q Menge aller Zustände (oft auch Z oder S (engl. state))
- Σ Alphabet / Menge der Alphabetzeichen (Sigma)
- δ Übergangsfunktion (Delta)
- E Menge der akzeptierenden Endzustände,
- s Startzustand.

Den **Übergang** von einem Zustand zum nächsten bezeichnet man auch als **Transition** oder **Zustandsübergang**.

Darstellung

Ein DEA wir häufig durch seinen Übergangsgraphen dargestellt.Gelegentlich wird auch der Begriff Zustandsübergangsdiagramm verwendet.

Im Übergangsgraphen sind viele Informationen enthalten:

- Q={q0,q1,q2,q3}
- $\Sigma = \{a,b\}$
- δ wird dargestellt durch die Pfeile, die von einem Zustand zum nächsten führen.
- $E = \{q3\}$
- s=q0

Die Übergangsmatri x

Die Übergangsfunktion δ kann auch als Übergangsmatrix oder Übergangstabelle dargestellt werden. Dabei werden in der ersten Spalte alle Zustände eingetragen und in der ersten Zeile alle Zeichen des Eingabealphabets Σ eingetragen.

In den Tabellenzellen wird vermerkt, zu welchem Zustand der Automat wechselt, wenn er zuvor im Zustand der ersten Spalte war und dann die Eingabe der ersten Zeile erfolgt. Die Übergangstabelle für das obige Beispiel sieht also so aus:

δ	а	b
q0	q1	q2
q1	q3	
q2	q3	
q3		

Das bedeutet im Beispiel: Wenn der Automat sich im Zustand **q1** befindet, und es Erfolgt die Eingabe a, wechselt er zum Zustand q3.

Nun fällt auf, dass die Tabelle unvollständig ist: Wenn der Automat sich im Zustand q1 befindet, und die Eingabe b erfolgt, ist kein Ziel angegeben, denn der Automat akzeptiert an dieser Stelle die Eingabe **b** überhaupt nicht. Das liegt daran, dass im Übergangsdiagramm der Fehlerzustand der Übersichtlichkeit halber weggelassen wurde. Das vollständige Diagramm sieht so aus:

Die vollständige Übergangsmatrix sieht also so aus:

δ	а	b
q0	q1	q2
q1	q3	qF
q2	q3	qF
q3	qF	qF
qF	qF	qF

Während man in Zustandsübergangsdiagrammen den Fehlerzustand meist weglässt, um die Übersichtlichkeit zu verbessern, wird der Fehlerzustand bei der Darstellung von δ als Übergangsmatrix für gewöhnlich angegeben.

(A1)

Gegeben ist der folgende DEA:

$$M = (\{z0,z1,z2,z3\}, \{a,b\}, \delta, z0, \{z3\})$$

δ ist in Form einer Übergangstabelle gegeben:

δ	a	b
z0	z1	z3
z1	z2	z0
z2	z3	z1

δ	a	b
z3	z0	z2

From:

https://wiki.qg-moessingen.de/ - **QG Wiki**

Permanent link:

https://wiki.qg-moessingen.de/faecher:informatik:oberstufe:automaten:dea:start?rev=1653056672

Last update: 20.05.2022 16:24

