Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
Beide Seiten der vorigen Revision Vorhergehende Überarbeitung Nächste Überarbeitung | Vorhergehende Überarbeitung | ||
faecher:informatik:oberstufe:algorithmen:sortieren:landau_revisited:start [31.01.2022 18:47] – [Average Case und Worst Case bei Quicksort] sbel | faecher:informatik:oberstufe:algorithmen:sortieren:landau_revisited:start [Unbekanntes Datum] (aktuell) – gelöscht - Externe Bearbeitung (Unbekanntes Datum) 127.0.0.1 | ||
---|---|---|---|
Zeile 1: | Zeile 1: | ||
- | ====== Aufwandsabschätzung im Detail ====== | ||
- | {{ : | ||
- | Im Abschnitt zur binären Suche haben wir uns bereits einige Gedanken zur [[: | ||
- | |||
- | Um ein Gefühl dafür zu bekommen, was die gängigsten Laufzeitcharakteristiken bedeuten, können die folgenden Beispiele dienen: | ||
- | |||
- | ^ ^ 10 Elemente | ||
- | | O(log n) | 0,15 Sekunden | ||
- | | O(n) | 0,5 Sekunden | ||
- | | O(n log n) | 1,6 Sekunden | ||
- | | O(n< | ||
- | | O(n!) | 2,1 Tage | 1, | ||
- | |||
- | Hypothetisch wurden für diese sehr grobe Berechnung eine Bearbeitungsgeschwindigkeit von ca. 20 Operationen je Sekunde zugrunde gelegt, was natürlich sehr viel langsamer ist, als ein Computer real arbeitet. | ||
- | |||
- | |||
- | Es ist aber wichtig zu verstehen, dass bei Problemen der Kategorie O(n< | ||
- | |||
- | ===== Quicksort ===== | ||
- | |||
- | Eine Besonderheit des Quicksort-Algorithmus ist, dass er Aufwand von der Wahl des Pivotelement abhängt. | ||
- | |||
- | Das hast du vielleicht bei deinen Übungen bereits bemerkt: Wenn man das Element stets sehr ungünstig wählt, gewinnt man bei Aufteilen des Problem kaum etwas, die nach der Partitionierung größte zu sortierende Menge ist im schlechtesten Fall in jedem Rekursionsschritt nur ein Element kleiner als zuvor, wobei die kleinste Menge immer leer ist. | ||
- | |||
- | <WRAP center round info 95%> | ||
- | Quicksort hat im **Worst Case** eine Laufzeit von O(n< | ||
- | </ | ||
- | |||
- | Aber was bedeutet **Worst Case** und **Avergae Case** genau? | ||
- | |||
- | ===== Die Landau Notation im Detail ===== | ||
- | |||
- | ==== Faktoren spielen keine Rolle? ==== | ||
- | |||
- | |||
- | Die Landau Notation unterschlägt Konstanten - wenn man schreibt O(n) meint man eigentlich O(c*n). Das kann man sich am Beispiel eine Methode klar machen, die die Elemente eines Arrays ausgibt: | ||
- | |||
- | < | ||
- | printArray(array): | ||
- | für jedes Element element von array: | ||
- | print element | ||
- | </ | ||
- | |||
- | Diese Methode hat die Laufzeit O(n) - sie muss jedes Element einmal anfassen uns ausgeben, bei doppelt so vielen Elementen dauert das doppelt so lange. | ||
- | |||
- | Jetzt betrachten wir die folgende Methode (Pseudocode): | ||
- | |||
- | < | ||
- | printArrayMitPause(array): | ||
- | für jedes Element element von array: | ||
- | print element | ||
- | warte(10s) | ||
- | </ | ||
- | |||
- | Die Methode '' | ||
- | |||
- | Darf man das? | ||
- | |||
- | ==== Suchvergleich mit Faktoren ==== | ||
- | |||
- | |||
- | Dazu vergleichen wir nochmal gedanklich die **einfache Suche** und die **binäre Suche** und ergänzen die Laufzeiten mit realen Zeitfaktoren: | ||
- | |||
- | ^ Einfache Suche ^ Binäre Suche ^ | ||
- | | '' | ||
- | |||
- | |||
- | Die einfache Suche läuft also beispielsweise auf einem sehr viel schnelleren Rechner, so dass pro Element lediglich 10 Millisekunden hinzukommen - die binäre Suche läuft auf einem langsameren Rechner, die Zeit wächst hier zwar logarithmisch aber mit einem Faktor von 1 Sekunde. | ||
- | |||
- | Dieser Vorteil wird jedoch von einer großen Anzahl von Elementen zunichte gemacht. | ||
- | |||
- | ---- | ||
- | {{: | ||
- | === (A1) === | ||
- | |||
- | Wie lange dauert es, eine Liste mit 4 Milliarden Elementen mit den beiden Algorithmen zu durchsuchen? | ||
- | |||
- | ++++ Lösung | | ||
- | |||
- | | Einfache Suche | 10ms * 4 Milliarden | 462 Tage | | ||
- | | Binäre Suche | 1Sekunde * log(4Milliarden) | 35 Sekunden | | ||
- | |||
- | Beachte: der Logarithmus in O(log n) wird zur Basis 2 berechnet. | ||
- | ++++ | ||
- | |||
- | <WRAP center round important 95%> | ||
- | Wenn die **Anzahl der Elemente veränderlich** ist, spielen Faktoren bei der Landau Notation keine Rolle. Jeder Vorteil eines Faktors wird bei einem Algorithmus mit besserer Laufzeit bei genügend großer Anzahl der Elemente wieder eingeholt. | ||
- | </ | ||
- | |||
- | |||
- | ==== Faktoren spielen doch eine Rolle? ==== | ||
- | |||
- | Manchmal spielen Faktoren aber eben doch eine Rollen - nämlich dann, wenn die Anzahl der Elemente beim Vergleich zweier Algorithmen vorgegeben ist. Das ist beispielsweise dann der Fall, wenn wir ein und dasselbe Array mit zwei unterschiedlichen Sortierverfahren sortieren wollen: Wenn die Laufzeit von Quicksort sich in Abhängigkeit des gewählten Pivotelements verändert, spielt der Faktor eine Rolle. | ||
- | |||
- | Die Konstante von Quicksort ist kleiner als die von Mergesort. Wenn beide Algorithmen eine Laufzeit von O(n log n) benötigen, ist Quicksort also schneller, wenn sich bei einer festen Anzahl von Elementen aber die Laufzeit von Quicksort hin zu O(n< | ||
- | |||
- | ===== Average Case und Worst Case bei Quicksort ===== | ||
- | |||
- | Wie oben bereits angedeutet, ist es besonders ungünstig, wenn die Partitionireung bei Quicksort immer so ausfällt, dass das größte zu sortierende " | ||
- | |||
- | {{ : | ||
- | |||
- | ==== Worst Case ==== | ||
- | |||
- | |||
- | Wenn man den Sortiervorgang nachvollzieht, | ||
- | |||
- | {{ : |